Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar.

Identifieur interne : 000068 ( Main/Exploration ); précédent : 000067; suivant : 000069

Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar.

Auteurs : Benjamin Petre [France] ; Ian Major ; Nicolas Rouhier ; Sébastien Duplessis

Source :

RBID : pubmed:21324123

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR) proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs), which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions.

RESULTS

Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling).

CONCLUSION

Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem to be universal among eukaryotes, with some exceptions likely attributable to atypical protein structures. In the perennial plant model Populus, we unravelled the TLPs likely involved in leaf rust resistance, which will provide the foundation for further functional investigations.


DOI: 10.1186/1471-2229-11-33
PubMed: 21324123
PubMed Central: PMC3048497


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar.</title>
<author>
<name sortKey="Petre, Benjamin" sort="Petre, Benjamin" uniqKey="Petre B" first="Benjamin" last="Petre">Benjamin Petre</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA†/Nancy Université, Unité Mixte de Recherche 1136 Interactions Arbres/Micro-organismes, Centre INRA de Nancy, F-54280 Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA†/Nancy Université, Unité Mixte de Recherche 1136 Interactions Arbres/Micro-organismes, Centre INRA de Nancy, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Major, Ian" sort="Major, Ian" uniqKey="Major I" first="Ian" last="Major">Ian Major</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Duplessis, Sebastien" sort="Duplessis, Sebastien" uniqKey="Duplessis S" first="Sébastien" last="Duplessis">Sébastien Duplessis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21324123</idno>
<idno type="pmid">21324123</idno>
<idno type="doi">10.1186/1471-2229-11-33</idno>
<idno type="pmc">PMC3048497</idno>
<idno type="wicri:Area/Main/Corpus">000068</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000068</idno>
<idno type="wicri:Area/Main/Curation">000068</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000068</idno>
<idno type="wicri:Area/Main/Exploration">000068</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar.</title>
<author>
<name sortKey="Petre, Benjamin" sort="Petre, Benjamin" uniqKey="Petre B" first="Benjamin" last="Petre">Benjamin Petre</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA†/Nancy Université, Unité Mixte de Recherche 1136 Interactions Arbres/Micro-organismes, Centre INRA de Nancy, F-54280 Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA†/Nancy Université, Unité Mixte de Recherche 1136 Interactions Arbres/Micro-organismes, Centre INRA de Nancy, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Major, Ian" sort="Major, Ian" uniqKey="Major I" first="Ian" last="Major">Ian Major</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Duplessis, Sebastien" sort="Duplessis, Sebastien" uniqKey="Duplessis S" first="Sébastien" last="Duplessis">Sébastien Duplessis</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Eukaryota (genetics)</term>
<term>Fungi (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants (genetics)</term>
<term>Populus (genetics)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Champignons (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Eucaryotes (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (génétique)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Eukaryota</term>
<term>Fungi</term>
<term>Plants</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Champignons</term>
<term>Eucaryotes</term>
<term>Plantes</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Genome, Plant</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Annotation</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Animaux</term>
<term>Annotation de séquence moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Génome végétal</term>
<term>Modèles moléculaires</term>
<term>Phylogenèse</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR) proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs), which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem to be universal among eukaryotes, with some exceptions likely attributable to atypical protein structures. In the perennial plant model Populus, we unravelled the TLPs likely involved in leaf rust resistance, which will provide the foundation for further functional investigations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21324123</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-11-33</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR) proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs), which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling).</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem to be universal among eukaryotes, with some exceptions likely attributable to atypical protein structures. In the perennial plant model Populus, we unravelled the TLPs likely involved in leaf rust resistance, which will provide the foundation for further functional investigations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Petre</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>INRA†/Nancy Université, Unité Mixte de Recherche 1136 Interactions Arbres/Micro-organismes, Centre INRA de Nancy, F-54280 Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Major</LastName>
<ForeName>Ian</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duplessis</LastName>
<ForeName>Sébastien</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056890" MajorTopicYN="N">Eukaryota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21324123</ArticleId>
<ArticleId IdType="pii">1471-2229-11-33</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-11-33</ArticleId>
<ArticleId IdType="pmc">PMC3048497</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2001 Oct;8(4):921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Apr;225(5):1147-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Jun;3(6):619-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1841721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2008 Mar 11;7:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Aug;34(6):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9290646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1996 Jan;3(1):19-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8548448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(3):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):876-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):755-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 May;70(7):856-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jan 21;17(2):171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Allergy. 2010 Sep;40(9):1422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20701616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):793-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 May;115(1):101-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):759-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9232867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(21):4586-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20796310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Jan 23;56(2):564-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 May;29(5):419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20204373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2598-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8637920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1997 Jul;38(7):783-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9297844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 Dec;93(12):1505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1997 Apr;44(7):1241-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 May;5(8):2069-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:349-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20441528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;200:38-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1956325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2006 Jul;63(1):12-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16736102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2010 Feb 10;73(4):709-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19857612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 May;139(1):27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 May 1;403(3):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17269932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Oct;219(6):936-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15605173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 May;49(2):125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 Aug;22(8):314-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9270306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Jan 15;182(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1731773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Nov;211(6):791-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11144263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Mar 5;286(4):1137-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10047487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 May;67(5):2365-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Aug 13;572(1-3):3-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Feb 1;61(Pt 2):186-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Jun 13;329(4):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12787673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Dec 5;228(3):893-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1469722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Dec;27(12):1649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Oct;23(10):1275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Sep;232(4):949-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20645107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Apr;66(6):619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18247136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2010 Aug 1;78(10):2391-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20544973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 May 20;191(1):51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9210588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2003 Jan-Feb;85(1-2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12765782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Nov;44(5):581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11198420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jan 31;45(4):1278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Oct;228(5):883-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18651170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2008;32(5):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1972 Dec 4;31(2):221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4647176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2009 Jun-Jul;113(Pt 6-7):700-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19249366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Feb;6(3):881-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 Jan 1;54(1):170-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14705035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(5):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1799695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Feb;231(3):637-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19997927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8552719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Enzyme Inhib Med Chem. 2009 Jun;24(3):646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18951281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 May;8(5):2341-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2006 Jan;88(1):45-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Champenoux</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Duplessis, Sebastien" sort="Duplessis, Sebastien" uniqKey="Duplessis S" first="Sébastien" last="Duplessis">Sébastien Duplessis</name>
<name sortKey="Major, Ian" sort="Major, Ian" uniqKey="Major I" first="Ian" last="Major">Ian Major</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Petre, Benjamin" sort="Petre, Benjamin" uniqKey="Petre B" first="Benjamin" last="Petre">Benjamin Petre</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000068 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000068 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21324123
   |texte=   Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21324123" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021